
Robot Interface Protocol
V1.0.0

Robot Interface Protocol

Disclaimer

The API / the robot interface protocol is provided as-is without warranty of any kind. Robart makes
no warranty or representation, either express or implied, regarding the API / the robot interface pro-
tocol, including but not limited to, any implied warranties of fitness for a particular purpose and Robart
disclaims any warranty that use of the API / the robot interface protocol will be uninterrupted or er-
ror free.

c⃝2023-01-26 RobArt page 2 of 71

Robot Interface Protocol

Revision History

Revision Date Author(s) Description
1.0.0 23.01.2023 Wenigwieser, F. Initial version

c⃝2023-01-26 RobArt page 3 of 71

Robot Interface Protocol

Contents

1. Introduction 6

2. General Rules 7
2.1. Finding the Robot . 7

2.1.1. Alternative to ZeroConf based discovery . 7
2.2. Number Formats . 8

3. Requests 9
3.1. Unlocking Requests . 10
3.2. General Requests . 10
3.3. Config Requests . 21
3.4. Map Requests . 28
3.5. Area Requests . 36
3.6. Points of Interest Requests . 41
3.7. Schedule Requests . 42
3.8. Logging Requests . 46
3.9. Direct Mode Requests . 50
3.10. Data types . 53

3.10.1. Modes . 53
3.10.2. Time Format . 53
3.10.3. Cleaning Modes . 54
3.10.4. Cleaning Parameter Sets . 54
3.10.5. Command Results . 54
3.10.6. Cleaning Grid Map . 55
3.10.7. Map Identifier . 55
3.10.8. Area Attributes . 56
3.10.9. Points of interest Attributes . 56
3.10.10. Execution top level states . 57
3.10.11. Execution operational states . 57
3.10.12. Execution sub states . 57
3.10.13. Robot flags . 58
3.10.14. Task types . 59
3.10.15. Task states . 59
3.10.16. Task area states . 63
3.10.17. Cleaning strategies . 63
3.10.18. Cleaning methods . 64
3.10.19. Pump volume modes . 64
3.10.20. Sensor types and measurements . 64
3.10.21. Device descriptors . 65
3.10.22. Data types and meta information . 65

c⃝2023-01-26 RobArt page 4 of 71

Robot Interface Protocol

4. Error Handling 67
4.1. Possible Error Codes . 67

A. Examples 68
A.1. Get the correct Feature Map . 68
A.2. Get the current robot Status . 68
A.3. Send robot to some location . 69
A.4. Add scheduled task . 70
A.5. Errorneous command result . 71

c⃝2023-01-26 RobArt page 5 of 71

Robot Interface Protocol

1. Introduction

To develop a user interface that can interact with the robot, a protocol is needed. To keep it simple and
platform neutral, we decided to use a simple HTTP implementation that only supports GET requests
and outputs JSON formatted response data.
Initially, we will not support POST request. However, we reserve the option of implementing it at a later
point in time if it becomes necessary.

c⃝2023-01-26 RobArt page 6 of 71

Robot Interface Protocol

2. General Rules

2.1. Finding the Robot
To provide a satisfying user experience, the robot will be automatically discoverable. For this purpose, we
are using ZeroConf. Robots will announce themselves as service type _aicu-http._tcp.local. Service
name and type are temporary, and need to be changed to an officially registered service type before
shipping a product. Using ZeroConf, you can get ip address and port of the http interface. Using the get
request get/robot_id you can then identify the robot instance at this address. For more information
about ZeroConf, see e.g.
http://en.wikipedia.org/wiki/Zero-configuration_networking
http://en.wikipedia.org/wiki/SRV_record

2.1.1. Alternative to ZeroConf based discovery
Extensive testing, and results from the field showed, that mdns(ZeroConf) might not be the best discovery
service regarding reliability. There are a couple of reasons, why mdns is not reliable enough:

• Consumer grade WiFi gear (especially access points) are known to be buggy.

• Multicasts which are used by mdns are treated differently in WiFi, than normal frames. They are
not reliable.

• mdns requires at least 2 successful multicast transmissions, for one discovery process. One is the
query, the second one is the response. This essentially doubles the chance of packet loss.

• Especially multicasts seem to be implemented rather badly on many access points.

To resolve the outlined problems, an alternative solution has been implemented. It runs in conjunction
with the default mdns discovery, and an application can use both discovery methods in parallel, to get
more reliable results.

Protocol specification

When the robot is connected to a network, it will send repeated UDP datagram based messages in regular
intervals to all nodes in the network using broadcasts. The interval is currently set to 5 seconds, which
might however be modified in a later iteration of the implementation.

The protocol is rather simple:
UDP port = 10009
IP4 destination address = 255.255.255.255 (broadcast)
IP6 destination address is not a fixed value, but derived from the group id 0x80526F62 using unicast
prefix based ipv6 multicast address allocation described in https://tools.ietf.org/html/rfc3306.

Message format:
One announcement message is (almost) only ASCII encoded text. The protocol is line based, separated

c⃝2023-01-26 RobArt page 7 of 71

http://en.wikipedia.org/wiki/Zero-configuration_networking
http://en.wikipedia.org/wiki/SRV_record
https://tools.ietf.org/html/rfc3306

Robot Interface Protocol

by the ’\n’ token. Each line represents a key-value pair, where the two components are separated by a
’=’ token.
The first line contains the robots unique id in the form "unique_id=AACTJ0-ePHkyuZ5rS4QD8Q\n".
The following lines give information about the robots assigned IPv4 and IPv6 addresses. IP addresses
can be declared in the following two forms:

• "IP4=192.186.178.23\n" => IPv4 addresses are always in the default dot-notation. IPv4 address
count can be either 0 or 1.

• "IP6=2001:470:6D:408:AEA:40FF:FE66:8167\n" => IPv6 addresses are declared using the nota-
tion described in https://tools.ietf.org/html/rfc5952. Ipv6 address count can be 0 to many
(in the current implementation at maximum 3, but do not rely on it).

Later protocol iterations can add more key-value pairs after the IP addresses, which means, that a
parser has to take that into account. The default policy for unknown keys is to log a warning, dismiss
the pair, and then continue parsing.

The last key-value pair contained in the message is terminated by an extra ’\n’ token. After this token
the message is finished with a 16 bytes digest / signature, which is used to verify the message & also
protect eventual protocol parser implementations against other applications sending udp broadcasts to
port 10009.

The signature can be validated, by initializing a MD5 hasher with the seed "Robarti", and then feeding
all the data of the message including the ’\n’ tokens to it, except the last 16 bytes of the message, which
contain the signature. After the message was fed to the hasher, generate a hash, and then compare it
to the last 16 bytes of the message. When the two byte sequences are equal, then the announcement
message is correct, when not, then it has to be discarded. It is recommended to do this verification before
parsing any other parts of the protocol.

Example message

Note, that non printable characters and bytes are ’\’ escaped:

unique_id=AACTJ0-ePHkyuZ5rS4QD8Q\n
IP4=192.168.178.23\n
IP6=2001:470:6D:408:AEA:40FF:FE66:8167\n
\n
\x16j\x1d9\xe5v\x82\x80\x0e.z\xed\xa2\x9e<H

2.2. Number Formats
As the robot does not have a floating point unit, it will send and receive only integers (this is called fixed
point math or FXP). The following table shows how to convert between floating point and fixed point.

Format FXP 2 Float Float 2 FXP min Value max Value
1.13.2 Float = F XP

22 FXP = (int)(22 ∗ Float) -8192 8191,75
1.4.11 Float = F XP

211 FXP = (int)(211 ∗ Float) -16 15,99951171875

c⃝2023-01-26 RobArt page 8 of 71

https://tools.ietf.org/html/rfc5952

Robot Interface Protocol

3. Requests

All requests are encoded in a standard http GET request of the form
http://<ip-of-robot>/<variable>[?<param-name>=<param-value>[&<param-name>=<param-value>]*]

In the request, strings should be first UTF-8 encoded and then use URL encoding. This is important
for localized strings. For example, a parameter value containing the string “Küche” should be encoded
as K%C3%BCche.

The ordering of parameters is important. Requests will only be accepted if the parameters are sent in
the exact order defined in this document. Otherwise the server will issue a parameter error.

The response will be JSON formatted text. All strings are UTF-8 encoded (with special and control
characters properly escaped as needed by the JSON format). In case of a valid request, http will answer
with 200 OK and a message that is specific to the request. In case of an invalid request, an error message
will be sent, as described in chapter 4. Starting with Protocol Version 3.0.0, the client is required to
gracefully handle fields which are not defined. This means that a client must discard them silently. The
reason for this requirement is to be able to extend the protocol without breaking backwards compatibility.
On the other hand, all requests must strictly follow the specification of the current implemented protocol
version on the robot. Therefore, the client needs to read out the protocol version from the robot and
adhere to the specified commands of this version. Any commands with unknown or missing fields will be
ignored by the robot.

c⃝2023-01-26 RobArt page 9 of 71

R
obot

Interface
Protocol

3.1. Unlocking Requests

PFS & Parameters Return Values Description
set/unlock_http

pass=<password>
{}

Unlocks the local http interface of the robot.
When its unlocked you can control the robot
with it. The password label is inside the robot
under the dustbin

set/lock_http

{}

Locks the http interface again, so you can not
control the robot via the local http interface
anymore

3.2. General Requests

PFS & Parameters Return Values Description
get/protocol_version

PFS:2|2L|3

{
" version_major " : <i n t e g e r >,
" version_minor " : <i n t e g e r >,
" p a t c h _ l e v e l " : <i n t e g e r >,

}

or
{

" version_major " : <i n t e g e r >,
" version_minor " : <i n t e g e r >,
" p a t c h _ l e v e l " : <i n t e g e r >,
" t l s " : <i n t e g e r >

}

Return the current protocol version, and
whether the local https interface is available;
This version number is identical to the version
noted in the document revision history at the
beginning of this document. The "tls" field can
be 0 for not available, or 1, which stands for
available.
Note that the SDK can assume, that no https
interface is available, when the "tls" field is not
included in the response(for older FW).

c⃝
2023-01-26

R
obA

rt
page

10
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

get/status

PFS:2|2L|3

{
" v o l t a g e ": < v o l t a g e >,
" mode " :" <Mode>" ,
" c leaning_parameter_set " : <set_id >,
" act ive_cleaning_parameter_set " : "< set >" ,
" active_pump_volume " : "<pump_volume>" ,
" b a t t e r y _ l e v e l " : <l e v e l >,
" c h a r g i n g " : <charge_state >,
" time " : {

" year " : <YYYY>,
" month " : <MM>,
" day " : <DD>,
" hour " : <hh24 >,
" min " : <mm>,
" s e c " : <ss >,
" day_of_week " : <DOW>

} ,
" startup_time " : {

" year " : <YYYY>,
" month " : <MM>,
" day " : <DD>,
" hour " : <hh24 >,
" min " : <mm>,
" s e c " : <ss >,
" day_of_week " : <DOW>

} ,
" r e c o v e r y _ i n f o " : {

" status_code " : <status_code >,
" v a l i d a t i o n _ p a t t e r n " : <val_pattern>

}
}

Voltage format:[V], 1.5.10
Mode example cleaning
For a list of supported modes, see chapter
3.10.1.
Cleaning Parameter Sets are described in
chapter 3.10.4.
Battery Level: Est. %, [0, 100]
Charging: <charge_state>: charging, connec-
ted, unconnected
Time: Shows the current time on the robot
Startup_Time: Shows the time when the robot
was turned on or restarted
See chapter 3.10.2 for time format specification

c⃝
2023-01-26

R
obA

rt
page

11
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

get/robot_flags

PFS:2|2L|3

{
" not_ready ": [< robot_flag >] ,
" n o t i f i c a t i o n ": [< robot_flag >] ,
" e r r o r " : [< robot_flag >]

}

If the robot is currently in "not-ready" (see
get/status), then there will be flags in the
"not-ready" or "error" section. Flags in "er-
ror" represent conditions from which the
robot cannot recover normally, and it must
be power-cycled. Flags in "not-ready" usu-
ally require some user interaction to make the
robot operational again. The flags in "notific-
ation" describe other conditions of the robot
that might require some user interaction, like
cleaning the dustbin or removing objects from
brushes or wheels. However, even without
interaction the robot will allow to start new
tasks.
For a list of supported flags see 3.10.13.

get/execution_state

PFS:2|2L|3

{
" t o p _ l e v e l _ s t a t e ": < t op _l e ve l _s t at e >,
" o p e r a t i o n a l _ s t a t e ": < o p e r a t i o n a l _ s t a t e >,
" sub_states " : [

{
" s t a t e ": < sub_state >,
" map_id": <map_id>,
" area_ids " : [< area_id >] ,
" s t r a t e g y ": < s t r i n g >

}
]

}

Shows the current execution state of the robot.
For a list of supported states, see chapters
3.10.10, 3.10.11, and 3.10.12.
Strategies are described in chapter 3.10.17.

c⃝
2023-01-26

R
obA

rt
page

12
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

get/power_status

PFS:2|2L|3

{
" power_status " : <s t r i n g >

}

Current power status of robot.
Possible power_status values:

• "initializing" Power management not
initialized yet.

• "sleeping" Robot is in sleep mode.

• "active" Robot is not in sleep mode.

get/command_result

PFS:2|2L|3

{
" commands " : [

{
" cmd_id " : "<command_id>" ,
" s t a t u s " : "< s t a t u s >" ,
" error_code " : "< int >"

}
]

}

Provides information about the outcome of the
last user commands
See chapter 3.10.5

set/switch_cleaning_parameter_set

PFS:2|2L|3

[opt]cleaning_parameter_
set=<set_id>
[opt]pump_volume=<pump_volume>

{}

Switching immediately to the new parameter
set. For <set_id> and <pump_volume> see
chapters 3.10.4 and 3.10.19.

get/cleaning_parameter_set

PFS:2|2L|3

{
" cleaning_parameter_set " : <set_id >,
" user_cleaning_parameter_set " : "<cleaning_parameter_set >" ,
" user_pump_volume " : "<pump_volume>"

}

Returns the cleaning parameter set (see 3.10.4)
currently set by the user

c⃝
2023-01-26

R
obA

rt
page

13
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

set/cleaning_parameter_default_settings

PFS:2|2L|3

[opt]cleaning_parameter_
set=<cleaning_parameter_set>
[opt]pump_volume=<pump_volume>

{}

Switching immediately to the new parameter
set. For <cleaning_parameter_set> and
<pump_volume> see chapters 3.10.4 and
3.10.19. Note that this is equivalent to set-
ting the live parameters default_scm and
default_pcm.

get/cleaning_parameter_default_settings

PFS:2|2L|3

{
" cleaning_parameter_set " : "< set >" ,
" pump_volume " : "<pump_volume>"

}

Returns the default cleaning parameter set
(see 3.10.4) and pump volume (see 3.10.19)
currently set by the user

get/robot_id

PFS:FACT|2|2L|3

{
" name " : "< s t r i n g >" ,
" unique_id " : "< s t r i n g >" ,
" camlas_unique_id " : "< s t r i n g >" ,
" model " : "< s t r i n g >" ,
" f irmware " : "< s t r i n g >" ,
" commit_id " : "< s t r i n g >" ,
" os_vers ion " : "< s t r i n g >" ,
" d e v i c e s " : [

{"name " : "<name>" ,
" model " : "<model >" ,
" i d " : "<id >" ,
" f irmware " : "<firmware >"} ,
. . .

]
}

Returns info about the robot including Name,
Model, UniqueID of Robot and Sensors and
the actual running firmware. The field com-
mit_id identifies the exact version of the
source code, from which the firmware was
built. The field os_version identifies the exact
yocto_apollo version, which was used to build
the firmware image.
Also includes an array of all the external /
internal devices on the robot with information
about the hardware model, unique identi-
fier, and running firmware of the device. All
information attached to a device is entirely
optional and can always be an empty string.

c⃝
2023-01-26

R
obA

rt
page

14
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

get/statistics

PFS:2|2L|3

{
" t o t a l _ d i s t a n c e _ d r i v e n " : <d i s t a n c e >,
" t o t a l _ c l e a n i n g _ t i m e " : <time >,
" tot a l_ are a_c le ane d " : <area >,
" total_number_of_cleaning_runs " : <int >

}

Distance format: 0.25.7 [m]
Time format: 0.26.6 [h]
Area format: 0.26.6 [m2]
These statistics are reset with
set/do_statistics_reset

get/operation_mode

PFS:2|2L|3

{ " operation_mode " : <o p e r a t i o n −mode>,
" o p e r a t i o n _ s t a t e " : <o p e r a t i o n −s t a t e >}

Operation-mode: dut or normal.
Operation-state: booted (modules, drivers and
services of Operating System are running),
initialized (parameters of system have been
loaded), running (firmware is up and running.
If the operation mode is DUT, the board ready
for testing) or exception (board is in error
state).

get/permanent_statistics

PFS:2|2L|3

{
" t o t a l _ d i s t a n c e _ d r i v e n " : <d i s t a n c e >,
" t o t a l _ c l e a n i n g _ t i m e " : <time >,
" tot a l_ are a_c le ane d " : <area >,
" total_number_of_cleaning_runs " : <int >

}

Distance format: 0.25.7 [m]
Time format: 0.26.6 [h]
Area format: 0.26.6 [m2]
These statistics are reset with
set/do_factory_reset

get/lifetime_statistics

PFS:2|2L|3

{
" t o t a l _ d i s t a n c e _ d r i v e n " : <d i s t a n c e >,
" t o t a l _ c l e a n i n g _ t i m e " : <time >,
" tot a l_ are a_c le ane d " : <area >,
" total_number_of_cleaning_runs " : <int >

}

Distance format: 0.25.7 [m]
Time format: 0.26.6 [h]
Area format: 0.26.6 [m2]
These statistics cannot be reset.

c⃝
2023-01-26

R
obA

rt
page

15
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

get/file_system_status

PFS:2|2L|3

{
" data " : {"mode " : <s t r i n g >}

}

Health information of the file system. Can be
used to check whether the file system is still
writable

get/pump_volume_settings

PFS:3

{
" mode " : <pump_volume>,
" priming " : <int >,
" c l e a n i n g " : <int >

}

Get pump volume settings. See 3.10.19 for
values of <pump_volume>. priming and
cleaning represents a volume in multiples of
0.01ml. E.g. a value of 6000 represents 60ml.

set/stop

PFS:2|2L|3

{
" cmd_id": <command_id>

}

Stop the robot immediately

set/abort

PFS:2|2L|3

{
" cmd_id": <command_id>

}

Stop the robot immediately and disable the
ability to continue the current task. If the
robot was already idle, disable the ability to
continue the previous task.

set/go_home

PFS:2|2L|3

{
" cmd_id": <command_id>

}

Go back to the position where the exploration
started and search for the docking station

c⃝
2023-01-26

R
obA

rt
page

16
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

set/explore

PFS:3

{
" cmd_id": <command_id>

}

Explores a map

set/clean_all

PFS:2|2L|3

[opt] cleaning_parameter_
set=<set_id>
[opt] cleaning_strategy_
mode=<mode_id>
[opt] method=<method>
[opt] pump_volume=<pump_volume>

{
" cmd_id": <command_id>

}

Start cleaning mode, clean everything that is
reachable
<set_id> See chapter 3.10.4
<mode_id> See chapter 3.10.17.
<method>: See chapter 3.10.18.
<pump_volume> See chapter 3.10.19.

set/clean_map

PFS:3

map_id=<map-id>
[opt] area_ids=<array of ids, separ-
ated by comma>,
e.g., area_ids=45,4,123
[opt] cleaning_parameter_
set=<set_id>
[opt] cleaning_strategy_
mode=<mode_id>
[opt] method=<method>
[opt] pump_volume=<pump_volume>

{
" cmd_id": <command_id>

}

Cleans the permanent map specified by
map_id according to the specified cleaning
parameter set (see Chapter 3.10.4). If area_ids
are provided, the corresponding sequence of
areas is cleaned.
<mode_id> See chapter 3.10.17.
<method>: See chapter 3.10.18.
<pump_volume> See chapter 3.10.19.

c⃝
2023-01-26

R
obA

rt
page

17
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

set/continue

PFS:3

[opt] cleaning_parameter_
set=<set_id>
[opt] cleaning_strategy_
mode=<mode_id>
[opt] method=<method>
[opt] pump_volume=<pump_volume>

{
" cmd_id": <command_id>

}

Continues clean all, clean map, or exploration
from previous state. Ignored if no task can be
continued.
<set_id> See chapter 3.10.4.
<mode_id> See chapter 3.10.17.
<method>: See chapter 3.10.18.
<pump_volume> See chapter 3.10.19.

set/clean_spot

PFS:2|2L|3

map_id=<map-id>
[opt] x1=<coordinate>
[opt] y1=<coordinate>
[opt] cleaning_parameter_
set=<set_id>
[opt] spot_type=<spot-type-id>
[opt] cleaning_strategy_
mode=<mode_id>
[opt] method=<method>
[opt] pump_volume=<pump_volume>

{
" cmd_id": <command_id>

}

Moves to the given spot (if possible), and
starts the spot cleaning program
Coordinate format: [cm], 1.13.2
Go to the given coordinates, and start spot
cleaning mode x1, y1 and spot_type are op-
tional, and need not be provided. If x1 or y1
are missing, the robot will clean at its current
position.
The map_id indicates to which map the loca-
tion refers to.
spot-type-id represents one of several, pre-
defined spot-size definitions.
<set_id> See chapter 3.10.4.
<mode_id> See chapter 3.10.17.
<method>: See chapter 3.10.18.
<pump_volume> See chapter 3.10.19

c⃝
2023-01-26

R
obA

rt
page

18
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

set/clean_start_or_continue

PFS:2|2L|3

[opt] cleaning_parameter_
set=<set_id>
[opt] cleaning_strategy_
mode=<mode_id>
[opt] method=<method>
[opt] pump_volume=<pump_volume>

{
" cmd_id": <command_id>

}

Will continue clean all, clean map, or explor-
ation from previous state if corresponding
task has been interrupted (like set/con-
tinue). Will start a new clean all otherwise
(like set/clean_all).
<set_id> See chapter 3.10.4.
<mode_id> See chapter 3.10.17.
<method>: See chapter 3.10.18.
<pump_volume> See chapter 3.10.19

set/goto_sleep

PFS:FACT|2|2L|3

[opt]sleep_mode=<string>
{

" cmd_id": <command_id>
}

The robot goes to a sleep mode ("soft_sleep",
"deep_sleep"). Currently only "soft_sleep" is
supported.

set/do_factory_reset

PFS:FACT|2|2L|3

{}

Deletes all Userdata from the robot

set/do_statistics_reset

PFS:2|2L|3

{}

Resets robot statistics (cf.
get/statistics)

set/priming_test

PFS:3

{
" cmd_id": <command_id>

}

Executes wet pad priming.

c⃝
2023-01-26

R
obA

rt
page

19
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

set/pump_volume_settings

PFS:3

mode=<pump_volume>
[opt] priming=<int>
[opt] cleaning=<int>

{}

Sets pump volume settings to low, me-
dium or high. See 3.10.19 for values of
<pump_volume>. Parameters priming and
cleaning are only allowed if mode=direct,
and set a specific water volume in 0.01ml. E.g.
a value of 6000 represents 60ml.

c⃝
2023-01-26

R
obA

rt
page

20
of71

R
obot

Interface
Protocol

3.3. Config Requests

PFS & Parameters Return Values Description
get/wifi_status

PFS:FACT|2|2L|3

{
" s t a t u s " : <s t r i n g >,
" s s i d " : <s t r i n g >,
" raw_ssid " : <s t r i n g >,
" r s s i " : <i n t e g e r >,
" mac_address " : <s t r i n g >,
" ip_address " : <s t r i n g >,
" type " : <s t r i n g >

}

Returns the current status of the WIFI inter-
face.
All non-ASCII, non-printable SSID characters
are replaced with ‘?’ in the ssid field.
raw_ssid will show the SSID in base64 encod-
ing, just like in get/wifi_scan_results
MAC_address format: xx:xx:xx:xx:xx:xx
where xx is a hexadecimal number
IP_address format: xxx.xxx.xxx.xxx
where xxx is a decimal number between 0 and
255
IMPORTANT: ip_address is deprecated in
favour of get/network_status
type can be wifi if connected to a wifi, uAP if
in access point mode, wired if connected via
LAN, undefined

c⃝
2023-01-26

R
obA

rt
page

21
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

get/network_status

PFS:FACT|2|2L|3

{
" mac_address " : <s t r i n g >,
" a d d r e s s e s " : [

{
" type " : <s t r i n g >,
" ip_addr " : <s t r i n g >

} ,∗
]

}

Returns the current network status of the
robot. It provides information about the IP
addresses, which are assigned to the robot‘s
network interface in form of an array.
Fields:
mac_address: xx:xx:xx:xx:xx:xx where xx is a
hexadecimal number
addresses[i]->type: can be "v4", "v6-ll", or
"v6-slaac", which determines the type of the
assigned ip address.
addresses[i]->ip_addr: Is either a
string formatted IPv4 address in form of
xxx.xxx.xxx.xxx
where xxx is a decimal number between 0 and
255, or a string formatted IPv6 address, which
is described in rfc5952.

c⃝
2023-01-26

R
obA

rt
page

22
of71

https://tools.ietf.org/html/rfc5952

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

set/connect_wifi

PFS:FACT|2|2L|3

ssid=<ssid>
passphrase=<passphrase>

{
" cmd_id": <command_id>

}

Connects immediately to the defined network.
If this does not work it will fallback to AP-
mode
This command can fail with several er-
ror_codes via "get/command_result"

0 - no error
deprecated errors(blackfin)

1 - deauthenticated
2 - dissociated
3 - not in range
4 - wlan chip not responding
5 - ssid len invalid
6 - cipher not supported
7 - psk len invalid
8 - dhcp start error
9 - dhcp timeout error
10 - assoc error

new error codes since posix/apollo
1000 - DISCONNECTED + wpa sup-

plicant reason_code 1001→ 1 =
WLAN_REASON_UNSPECIFIED
see Reason codes (IEEE Std 802.11-
2016, 9.4.1.7, Table 9-45)

2001 - NETWORK_NOT_FOUND
2002 - COMMAND_ERROR
2003 - LOCAL_DISCONNECT

c⃝
2023-01-26

R
obA

rt
page

23
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

set/create_uap

PFS:FACT|2|2L|3

{
" cmd_id": <command_id>

}

creates a hotspot without the need of a factory
reset or connection loss.

set/start_scan

PFS:FACT|2|2L|3

{
" cmd_id": <command_id>

}

Starts a scan of WIFI networks.

get/wifi_scan_results

PFS:FACT|2|2L|3

{
" cmd_id " : <int >,
" scanning " : <boolean >,
" scan " : [

{
" s s i d " : <SSID>,
" raw_ssid " : <RAWSSID−base64−encoded >,
" b s s i d " : <mac−address >,
" channel " : <chan_nr >,
" p r o t o c o l " : <s t r i n g >,
" p a i r w i s e c i p e r " : <s t r i n g >,
" g r o u p c i p h e r " : <s t r i n g >,
" r s s i " : <int >

}
]

}

All non-ASCII, non-printable SSID characters
are replaced with ‘?’ in the ssid field. The
raw_ssid field will always contain the actual
SSID in base64 encoded format, which means
it can contain any character (even non ASCII
unicode chars).

c⃝
2023-01-26

R
obA

rt
page

24
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

get/stored_wifi_networks

PFS:FACT|2|2L|3

{
" s a v e d _ w i f i s " : [

{
" s s i d " : <SSID>,
" raw_ssid " : <RAWSSID−base64−encoded >,
" b s s i d " : <mac−address >,
" channel " : <chan_nr >,
" p r o t o c o l " : <s t r i n g >,
" p a i r w i s e c i p e r " : <s t r i n g >,
" g r o u p c i p h e r " : <s t r i n g >,
" r s s i " : <int >

}
]

}

All non-ASCII, non-printable SSID characters
are replaced with ‘?’ in the ssid field. The
raw_ssid field will always contain the actual
SSID in base64 encoded format, which means
it can contain any character (even non ASCII
unicode chars).

set/uap_ssid

PFS:FACT|2|2L|3

ssid=<ssid>
{

" cmd_id": <command_id>
}

overrides uap ssid;

• This will only be effective for the next
call to either set/pairing_on or set/cre-
ate_uap.

• It will not create an access point.

• It will not change the SSID of a currently
open access point.

c⃝
2023-01-26

R
obA

rt
page

25
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

set/wifi_region

PFS:FACT|2|2L|3

reg_domain=<ISO/IEC 3166-1 al-
pha2>

{}

sets wireless regulatory domain;

• The <ISO/IEC 3166-1 alpha2> are
two character alphabetic country codes,
defined in ISO 3166.

• This should be called, before attempt-
ing to connect to any wifi network, and
before scanning for wifi networks.

• During the runtime of the robot (one
reboot cycle), this call should only be
called once. Preferably as early as pos-
sible after boot.

set/wifi_power_save

PFS:FACT|2|2L|3

power_save=<int>
{}

enable or disable wifi power save mode (en-
abled may lead to worse ping).

get/wifi_power_save

PFS:FACT|2|2L|3

{
" power_save " : <i n t e g e r >

}

get wifi power save mode.

c⃝
2023-01-26

R
obA

rt
page

26
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

control/iot_status

PFS:FACT|2|2L|3

{
" i o t _ s t a t e ": < i o t _ s t a t e >,
" i o t _ s e r v e r ": < iot_server_name >,
" c o n f i r m a t i o n _ s t a t e ": < c o n f i r m a t i o n _ s t a t e >

}

Returns the status of the IoT connection in-
cluding the confirmation status of push button
<iot_state> can be
unknown (during starting process),
disabled (when IoT is not enabled),
connected or
disconnected.
<iot_server_name> is the iot-server name
including the port number, to which the robot
is connected (in "<host>:<port>" format).
<confirmation_state> can be
none (regular state),
waiting (if waiting for confirmation via
control/confirmed_button),
confirmed (if control/confirmed_button
was called)

get/robot_name

PFS:FACT|2|2L|3

{
" name " : "< s t r i n g >"

}

returns the name of the Robot

set/robot_name

PFS:FACT|2|2L|3

name=<String>
{}

Set the user-defined name of the robot. Can be
retrieved via get/robot_name

c⃝
2023-01-26

R
obA

rt
page

27
of71

R
obot

Interface
Protocol

3.4. Map Requests
A map is always referenced by a map_id (see Chapter 3.10.7).

PFS & Parameters Return Values Description
get/feature_map

PFS:2|3

[opt]map_id=<int>
{"map " :

{
" map_id " : <map−id >,
" l i n e s " : [

{
" x1 ": < c o o r d i n a t e >,
" y1 ": < c o o r d i n a t e >,
" x2 ": < c o o r d i n a t e >,
" y2 ": < c o o r d i n a t e >

}
] ,
" docking_pose " : {

" x " : <c o o r d i n a t e >,
" y " : <c o o r d i n a t e >,
" heading " : <angle >,
" v a l i d " : <t r u e / f a l s e >

} ,
" timestamp ": < timestamp>

}
}

If map_id is not provided, data for the active
map_id are shown.
Coordinate format: [cm], 1.13.2
A map consists of a set of lines, each going
from x1/y1 to x2/y2.

c⃝
2023-01-26

R
obA

rt
page

28
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

get/tile_map

PFS:3

[opt]map_id=<int>
{"map " :

{
" map_id : <map−id >,
" a r e a s " :

[
{

" area_id " : <area−id>
}

] ,
" l i n e s " : [

{
" x1 ": < c o o r d i n a t e >,
" y1 ": < c o o r d i n a t e >,
" x2 ": < c o o r d i n a t e >,
" y2 ": < c o o r d i n a t e >
}

] ,
" docking_pose " : {

" x " : <c o o r d i n a t e >,
" y " : <c o o r d i n a t e >,
" heading " : <angle>
" v a l i d " : <0/1>

} ,
" s u g g e s t e d _ o r i e n t a t i o n " : {

" x " : <c o o r d i n a t e >,
" y " : <c o o r d i n a t e >,
" a n g l e " : <angle>

} ,
" o u t l i n e " : [
{

" x " : <c o o r d i n a t e >,
" y " : <c o o r d i n a t e >

}
] ,
" timestamp " : <timestamp>

}
}

If map_id is not provided, data for the active
map_id are shown. Coordinate format: [cm],
1.13.2 A map consists of a set of a set of area
ids that belong to the simplified map. These
areas can be retrieved by the get_area request.
Additionally, the map consists of a set of sim-
plified lines that indicated mayor obstacles
(segments). All areas and segments are repres-
ented in the same (global) coordinate system.
Finally, a transformation is suggested, which
indicates a possible map transformation for
simplified displying.

c⃝
2023-01-26

R
obA

rt
page

29
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

get/topo_map

PFS:3

[opt]map_id=<int>
{

" map_id " : <map−id >,
" nodes " :

[
{

" area_id " : <area−id>
}

] ,
" edges " :

[
{

" from " : <area−id >,
" to " : <area−id >,
" l i n e " : {

" x1 ": < c o o r d i n a t e >,
" y1 ": < c o o r d i n a t e >,
" x2 ": < c o o r d i n a t e >,
" y2 ": < c o o r d i n a t e >

}
}

]
}

If map_id is not provided, data for the active
map_id are shown.
Coordinate format: [cm], 1.13.2
A topological map is a graph where the nodes
are the map areas, and each edge represents a
gap or door between the two areas it connects.
The gap is a line going from x1/y1 to x2/y2.

get/n_n_polygons

PFS:2|3

[opt]map_id=<int>
{"map " :

{
" map_id " : <map−id >,
" polygons " : [
{ " segments " : [

{
" x1 ": < c o o r d i n a t e >,
" y1 ": < c o o r d i n a t e >,
" x2 ": < c o o r d i n a t e >,
" y2 ": < c o o r d i n a t e >
}

]
}
] ,
" timestamp " : <timestamp>

}

}

If map_id is not provided, data for the active
map_id are shown.
Coordinate format: [cm], 1.13.2
A map consists of a set of polygons. Each
polygon consists of a set lines, each going from
x1/y1 to x2/y2.

c⃝
2023-01-26

R
obA

rt
page

30
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

get/seen_polygon

PFS:2|3

[opt]map_id=<int>
{

" seen_polygon " : {
" map_id " : <int >,
" polygons " : [

{" segments " : [
{" x1 " : <int >,

" y1 " : <int >,
" x2 " : <int >,
" y2 " : <int >
}

] }
]

}
}

If map_id is not provided, data for the active
map_id are shown.
Coordinate format: [cm], 1.13.2
A seen_polygon consists of a set of polygons
(some may be holes). Each polygon consists
of a set segments, each going from x1/y1 to
x2/y2.

get/rob_pose

PFS:2|3

[opt]map_id=<int>
{

" map_id " : <map−id >,
" target_map_id " : <map−id >,
" x1 " : <c o o r d i n a t e >,
" y1 " : <c o o r d i n a t e >,
" heading " : <angle >,
" v a l i d " : true ,
" i s _ t e n t a t i v e " : <t r u e / f a l s e >,
" timestamp " : <timestamp>

}

Coordinate format: [cm], 1.13.2
Angle format: [rad], 1.4.11
0 rad means along the positive x-axis; angle
> 0 is a rotation counter-clockwise, < 0 a
rotation clockwise.
The map_id result shows the current map
(map that robot operates on). If the map_id
parameter is provided and differs from the
current map, target_map_id is set and the
position represents the estimated position of
the robot if it was on map target_map_id.
The is_tentative flag indicates whether the
given rob pose is tentative (i.e., a prelimin-
ary estimate of the robot pose), or if it is the
actual (confirmed) robot pose on the map.

c⃝
2023-01-26

R
obA

rt
page

31
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

get/cleaning_grid_map

PFS:2|3

[opt] map_id=<int>
[opt] layer=0|1
[opt] minheat=1|2

{
" map_id " : <map−id >,
" lower_left_x " : <c o o r d i n a t e >,
" lower_left_y " : <c o o r d i n a t e >,
" s ize_x " : <int >,
" s ize_y " : <int >,
" r e s o l u t i o n " : <r e s o l u t i o n >,
" c l e a n e d " : [

<r l e binary bitmap>
] ,
" timestamp " : <timestamp>

}

Coordinate format: [cm], 1.13.2
Resolution format: [cm], 1.13.2
See separate point: Chapter 3.10
map_id is currently ignored.
get/cleaning_grid_map will currently al-
ways return the grid map of the currently used
map.
layer and minheat are only relevant for deep
cleaning. Only one of them can be given. If
neither is provided, minheat 1 is assumed.
layer 0 returns the data for the first cleaning
pass. layer 1 returns the data of the second
(perpendicular) cleaning pass.
minheat 1 returns a grid map where all cells
are marked that have been cleaned in either
cleaning pass. minheat 2 returns a grid map
where all cells are marked that have been
cleaned in both cleaning passes.

c⃝
2023-01-26

R
obA

rt
page

32
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

get/maps

PFS:3

{
" maps " : [
{

" map_id " : map_id ,
" map_meta_data": < s t r i n g >,
" permanent_flag " : <bool >,
" s t a t i s t i c s " : {

" a r e a _ s i z e ": < area_size >,
" c l e a n i n g _ c o u n t e r " : <int >,
" est imated_cleaning_time " : <dur >,
" average_cleaning_time " : <dur >,
" l a s t _ c l e a n e d " : {

" year " : <YYYY>,
" month " : <MM>,
" day " : <DD>,
" hour " : <hh24 >,
" min " : <mm>,
" s e c " : <ss>

}
}

}
]

}

Area size format: [cm2] 1.26.
Cleaning time fmt: [s] 0.22.10
The permanent flag indicates the permanent
availability of the map.

get/map_status

PFS:3

{
" operation_map_id " : <map_id>,
" active_map_id " : <map_id>

}

Returns the current map status of the robot.
Operation map id denotes the current map
the robot is operating on (e.g., set by the user
with a clean map command). The active map
id denotes the current map used by the robot.
The robot is localized in the operation map if
and only if operation map id equals the active
map id.

get/main_map_id

PFS:3

{
" main_map_id " : <map−id>

}

If no main map was set, this will return with a
main_map_id of 0.

c⃝
2023-01-26

R
obA

rt
page

33
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

set/used_map

PFS:3

map_id=<map_id>
{}

If map_id is non-zero, it will be used for all
requests (like /get/tile_map) that take an
optional map id.

set/save_map

PFS:3

[opt]map_id=<map_id>
{

" cmd_id": <command_id>
}

Save the given map. (If map_id is omitted, it
will save the "current" map.)

set/modify_map

PFS:3

map_id=<map_id>
[opt] map_meta_data=<String>
[opt] docking_pose_x=<int>
[opt] docking_pose_y=<int>
[opt] docking_pose_heading=<i>
[opt] docking_station_available
=<bool>

{
" cmd_id": <command_id>

}

Modifies the given map with map metadata
and/or docking pose.
docking_pose_x: [cm]1.13.2
docking_pose_y: [cm]1.13.2
docking_pose_heading: [rad]1.4.11

set/delete_map

PFS:3

map_id=<map_id>
{

" cmd_id": <command_id>
}

Delete an existing map.

set/revert_map

PFS:3

map_id=<map_id>
{

" cmd_id": <command_id>
}

Reject map or map changes after a completed
exploration or map extension.

c⃝
2023-01-26

R
obA

rt
page

34
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

set/split_map

PFS:3

map_id=<map_id>
{}

Split the map with the given id.

set/main_map_id

PFS:3

main_map_id=<map_id>
{}

Sets the main map for the robot. Clear the
main map by setting main_map_id to 0.

c⃝
2023-01-26

R
obA

rt
page

35
of71

R
obot

Interface
Protocol

3.5. Area Requests

PFS & Parameters Return Values Description
get/areas

PFS:3

[opt]map_id=<int>
{

" map_id " : <map_id>,
" a r e a s " : [

{
" i d " : <int >,
" p o i n t s " : [

{
" x " : <c o o r d i n a t e >,
" y " : <c o o r d i n a t e >

}
] ,

" area_type " : <area_type >,
" a r e a _ s t a t e " : <area_state >,
" area_meta_data " : <s t r i n g >,
" cleaning_parameter_set " : <set_id >,
" f l o o r _ t y p e " : <f loor_type >,
" room_type " : <room_type >,
" strategy_mode " : <strategy_mode >,
" method " : <method>,
" pump_volume " : <pump_volume>,
" s t a t i s t i c s " : {

" a r e a _ s i z e ": < area_size >,
" c l e a n i n g _ c o u n t e r " : <int >,
" est imated_cleaning_time " : <dur >,
" average_cleaning_time " : <dur >,
" l a s t _ c l e a n e d " : {

" year " : <YYYY>,
" month " : <MM>,
" day " : <DD>,
" hour " : <hh24 >,
" min " : <mm>,
" s e c " : <ss>

}
}

}
]

}

If map_id is not provided, data for the active
map_id are shown.
Coordinate format: [cm], 1.13.2.
Area size format: [cm2], 1.26.5
Cleaning time format: [s], 0.22.10
ID is an integer which identifies an area (can
be used for deleting / modifying an area).
Points are interconnected by lines, the last
point is connected to the first one. A valid
area must contain at least 3 points.
The field area_type indicates the type of
area (room, to_be_cleaned). The field
area_state indicates the behavior state (clean,
blocking, inactive, proposed_blocking,
declined_blocking) of this particular
area. The fields floor_type (e.g., hardwood,
carpet) and room_type (none, kitchen,
sleeping_room, etc.) describe the area in
more detail (see Chapter 3.10.8). In case the
user does not explicitly define the cleaning
strategy, the field strategy_mode indicates
the strategy mode for cleaning of the area
(normal, deep, walls_and_corners).
The field area_meta_data is any user defined
string to name the Area, does not have to be
unique.

c⃝
2023-01-26

R
obA

rt
page

36
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

set/add_area

PFS:3

map_id=<map_id>
[opt]area_meta_data=<string>
[opt]area_type=<area_type>
[opt]cleaning_parameter_set=<set-
id>
[opt]area_state=<area_state>
[opt]floor_type=<floor_type>
[opt]room_type=<room_type>
[opt]strategy_mode=<strategy_mode>
[opt]method=<method>
[opt]pump_volume=<pump_volume>
x1=<coordinate>
y1=<coordinate>
· · ·
xn=<coordinate>
yn=<coordinate>

{
" cmd_id": <command_id>

}

An area will be added to the current map.
In the same request the points that define
the area will be included, as well as certain
area attributes (see Chapter 3.10.8). Also a
user-defined name can be given.

c⃝
2023-01-26

R
obA

rt
page

37
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

set/modify_area

PFS:3

map_id=<map_id>
area_id=<area-id>
[opt]area_meta_data=<string>
[opt]area_type=<area_type>
[opt]cleaning_parameter_set=<set-
id>
[opt]area_state=<area_state>
[opt]floor_type=<floor_type>
[opt]room_type=<room_type>
[opt]strategy_mode=<strategy_mode>
[opt]method=<method>
[opt]pump_volume=<pump_volume>
[opt]x1=<coordinate>
[opt]y1=<coordinate>
· · ·
[opt]xn=<coordinate>
[opt]yn=<coordinate>

{
" cmd_id": <command_id>

}

An area will be modified to the specified given
data. In the same request certain area attrib-
utes (see Chapter 3.10.8) can be modified.

set/merge_areas

PFS:3

map_id=<map-id>
area_id1=<area-id>
area_id2=<area-id>

{
" cmd_id": <command_id>

}

Two areas will be merged into one. Properties
of area_id1 will be used for the result.

c⃝
2023-01-26

R
obA

rt
page

38
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

set/split_area

PFS:3

map_id=<map_id>
area_id=<area-id>
x1=<coordinate>
y1=<coordinate>
· · ·
xn=<coordinate>
yn=<coordinate>

{
" cmd_id": <command_id>

}

Splits an area in two or more areas along the
poly-line defined by the points x1, y1, · · · , xn,
yn.

set/delete_area

PFS:3

map_id=<map-id>
area_id=<area-id>

{
" cmd_id": <command_id>

}

Delete the area identified by map and area id

set/propose_nogo_areas

PFS:3

map_id=<map-id>
{

" cmd_id": <command_id>
}

Add nogo areas based on points-of-interest on
the map specified by map_id. The added nogo
areas will be added as areas with area_state
proposed_blocking (see Chapter 3.10.8) and
will not influence robot behavior until con-
firmed with set/confirm_nogo_areas. The
proposed nogo areas are part of the output of
get/areas.

c⃝
2023-01-26

R
obA

rt
page

39
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

set/confirm_nogo_areas

PFS:3

map_id=<map-id>
[opt] confirmed=<comma-separated
area ids>
[opt] declined=<comma-separated
area ids>
Example:
confirmed=4,7,9
declined=2,11,8

{
" cmd_id": <command_id>

}

Confirm or decline proposed nogo areas gen-
erated by set/propose_nogo_areas. The
specified areas must have the area state pro-
posed_blocking. All confirmed nogo areas will
subsequentially be converted into standard
blocking areas, while all declined nogo areas
will have the area_state declined_blocking.
Declined nogo areas have no influence on
robot behavior, they are only relevant for
the automatic nogo area creation with
set/propose_nogo_areas. See Chapter 3.10.8
for a summary of all area attributes.

c⃝
2023-01-26

R
obA

rt
page

40
of71

R
obot

Interface
Protocol

3.6. Points of Interest Requests

PFS & Parameters Return Values Description
get/points_of_interest

PFS:3

[opt]map_id=<int>
[opt]points_ids=<array of ids,
separated by comma> (e.g.,
points_ids=34,3,123

{
" map_id " : <map_id>,
" p o i n t s _ o f _ i n t e r e s t " : [

{
" i d " : <int >,
" pose " : {

" x " : <c o o r d i n a t e >,
" y " : <c o o r d i n a t e >,
" heading " : <angle>

} ,
" type " : <point_of_interest_type >,
" meta_data " : <s t r i n g >,
" timestamp " : {

" year " : <YYYY>,
" month " : <MM>,
" day " : <DD>,
" hour " : <hh24 >,
" min " : <mm>,
" s e c " : <ss>

}
}

]
}

If map_id is not provided, data for the act-
ive map_id are shown. If points_ids are not
provided all points of interest for given map
are shown.
Coordinate format: [cm], 1.13.2
Angle format: [rad], 1.4.11
"id" is an integer which identifies a point of
interest (can be used for deleting / modifying
a point of interest).
The field "type" indicates the type of point of
interest (see Chapter 3.10.9).
The field "meta_data" is any user defined
string, does not have to be unique.

set/delete_points_of_interest

PFS:3

map_id=<int> points_ids=<array
of ids, separated by comma> (e.g.,
points_ids=34,3,123

{
" cmd_id": <command_id>

}

Delete the points of interest identified by
map_id and its points_ids

c⃝
2023-01-26

R
obA

rt
page

41
of71

R
obot

Interface
Protocol

3.7. Schedule Requests

PFS & Parameters Return Values Description
get/schedule

PFS:2|2L|3

{
" s c h e d u l e " : [

{
" task_id " : <task_id>
" time " : {

" days_of_week " : <List_Of_DOW>,
" year " : <YYYY>,
" month " : <MM>,
" day " : <DD>,
" hour " : <hh24 >,
" min " : <mm>,
" s e c " : <ss>

} ,
" r e p e a t e d " : <int >,
" enabled " : <int >,
" t a s k " : {

" map_id " : <map_id>,
" cleaning_parameter_set " : <set_id >,
" strategy_mode " : <strategy_mode >,
" method " : <method>,
" pump_volume " : <pump_volume>,
" cleaning_mode ": <mode_id>,
" parameter1 ": < s t r i n g >,
" parameter2 ": < s t r i n g >,
" parameters " : [< s t r i n g >] ,

}
}

]
}

The array schedule will contain 0 or more
elements (0, if there is no scheduled task).
time and days_of_week formats are explained
in chapter 3.10.2; repeated defines the time
in days before this task will be repeated (e.g.
0 for a one time task, 1 for a daily task and
7 for a weekly task). enabled is either 1 or
0. task defines what to do in the cleaning
mode (see chapter 3.10.3). In case of clean all,
parameter1 and 2 can be empty. parameters
contains all parameters in a list.

c⃝
2023-01-26

R
obA

rt
page

42
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

set/add_scheduled_task

PFS:2|2L|3

cleaning_mode=<mode-id>
cleaning_parameter_
set=<set-id>
[opt]strategy_mode=<strategy_mode>
[opt]method=<method>
[opt]pump_volume=<pump_volume>
[opt]days_of_week=
<List-Of-DOW>
[opt]year=<YYYY>
[opt]month=<MM>
[opt]day=<DD>
hour=<hh24>
min=<mm>
[opt]repeated=<dd>
map_id=<map-id>
param1=<string>
param2=<string>
[opt]param3..16=<string>
[opt]enabled=<int>

{
" cmd_id": <command_id>

}

mode-id: See chapter 3.10.3 for available
modes
See chapter 3.10.2 for a description of the time
format
for the definitions of parameters see
get/schedule
EITHER days_of_week, OR year AND month
AND day AND repeated must be provided.
Enabled must be either 1 or 0. Its default
value is 1.

c⃝
2023-01-26

R
obA

rt
page

43
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

set/modify_scheduled_task

PFS:2|2L|3

task_id=<task_id>
[opt]cleaning_mode=
<mode-id>
[opt]cleaning_parameter_
set=<set-id>
[opt]strategy_mode=<strategy_mode>
[opt]method=<method>
[opt]pump_volume=<pump_volume>
[opt]days_of_week=
<List-Of-DOW>
[opt]year=<YYYY>
[opt]month=<MM>
[opt]day=<DD>
[opt]hour=<hh24>
[opt]min=<mm>
[opt]repeated=<dd>
[opt]map_id=<map-id>
[opt]param1=<string>
[opt]param2=<string>
[opt]param3..16=
<string>
[opt]enabled=<int>

{
" cmd_id": <command_id>

}

Allows changing some or all of the fields of a
cleaning task. Some of the fields can only be
set as a group or not at all.
Groups:

• cleaning_mode, map_id, param1..16

• cleaning_parameter_set

• days_of_week OR
year+month+day+repeated

• hour, min

• enabled

mode-id: See chapter 3.10.3 for available
modes
See chapter 3.10.2 for a description of the time
format.

set/delete_scheduled_task

PFS:2|2L|3

task_id=<task_id>
{

" cmd_id": <command_id>
}

Will delete the selected task

c⃝
2023-01-26

R
obA

rt
page

44
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

set/clear_schedule

PFS:2|2L|3

{
" cmd_id": <command_id>

}

Clears the whole schedule
The request will not return an error if there is
no current schedule

c⃝
2023-01-26

R
obA

rt
page

45
of71

R
obot

Interface
Protocol

3.8. Logging Requests

PFS & Parameters Return Values Description
get/ui_cmd_log

PFS:2|2L|3

[{
" i d " : <int >,
"cmd " : <s t r i n g >,
" r t c " : <rtc >,
" params " : <s t r i n g >,
" s o u r c e " : <int >

}]

Get the list of the last 50 UI commands.

get/notifications

PFS:2|2L|3

[opt] last_id=<integer>
{

" r o b o t _ n o t i f i c a t i o n s " : [
{

" i d ": < int >,
" type ": < n o t i f i c a t i o n _ t y p e >,
" type_id ": < type_id >,
" timestamp " : {

" year " : <YYYY>,
" month " : <MM>,
" day " : <DD>,
" hour " : <hh24 >,
" min " : <mm>,
" s e c " : <ss>

} ,
" c u r r e n t _ s t a t u s ": < s t r i n g >,
" map_id": <map_id>,
" area_id ": < area_id >,
" source_type " : <s t r i n g >,
" source_id " : <int >,
" h i e r a r c h y " : <int >,
" i n f o " : <int >

}
]

}

last_id == 0 → get all, else get_id > last_id
Currently we show at most 50 events and
notifications.
current_status={clean_all, clean_map,
clean_map_areas,clean_area, clean_spot,
go_to, go_home, etc. };
source_type={user, calendar, operation_unit,
unknown};
source_id=request_id (task_id from schedule,
or cmd_id respectively);
hierarchy=1 (top level task), > 1 (lower level
task);

c⃝
2023-01-26

R
obA

rt
page

46
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

get/task_history

PFS:2|2L|3

[opt] last=<integer>
[opt] last_id=<integer>

{
" t a s k _ h i s t o r y " : [

{
" i d ": < int >,
" task_type_id ": < task_type_id >,
" task_type ": < s t r i n g >,
" s t r a t e g y ": < s t r i n g >,
" method " : <method>,
" pump_volume " : <pump_volume>,
" cleaning_parameter_set ": < set_id >,
" map_id": <map_id>,
" area_ids " : [< area_id >] ,
" s o u r c e ": < s t r i n g >,
" source_id ": < int >,
" start_time " : {

" year " : <YYYY>,
" month " : <MM>,
" day " : <DD>,
" hour " : <hh24 >,
" min " : <mm>,
" s e c " : <ss>

} ,
" end_time ": <DATETIME s t r u c t u r e , as above >,
" s t a t e _ i d ": < task_state_id >,
" s t a t e ": < s t r i n g >,
" area ": < area_size >,
" c o n t i n u a b l e ": < int >,
" e v e n t _ h i s t o r y " : [

{
" time ": <DATETIME s t r u c t u r e >,
" s t a t e _ i d ": < task_state_id >,
" s t a t e ": < s t r i n g >

}
] ,
" a r e a _ h i s t o r y " : [

{
" area_id ": < area_id >,
" start_time ": <DATETIME s t r u c t u r e >,
" end_time ": <DATETIME s t r u c t u r e >,
" s t a t e _ i d ": < task_area_state_id >,
" s t a t e ": < s t r i n g >

}
] ,
" f irmware ": < s t r i n g >

}
] ,
" task_requires_map_confirmation ": < int >,
" t a s k _ r e q u i r e s _ s p e c i a l _ a r e a _ c o n f i r m a t i o n ": < int >

}

Shows the status of the last few executed robot
tasks.
(For last=N, returns at most the N last entries
of the task history. For last_id=ID, skips the
first tasks with id < ID.)
For a list of supported task types, task states
and task area states, see chapters 3.10.14,
3.10.15 and 3.10.16.
Strategies are described in chapter 3.10.17.
Cleaning Parameter Sets are described in
chapter 3.10.4.
For the format of start_time, end_time and
time, see chapter 3.10.2.
If continuable is 1, that task can be continued
via set/continue.
The event_history contains a list of previous
interruptions, with time and interruption state.
The area_history contains a list of cleaned
areas, with start and end time, and other area
entries (e.g. areas created by reexploration).
See 3.10.15 for possible states.
task_requires_map_confirmation points at
the last exploration or extending map cleaning
task that requires a user decision. It is 0, if no
such decision is required. It is cleared if the
map of that task is saved or reverted.
task_requires_special_area_confirmation
points at the last carpet detecting task that
has still at least one area marked as car-
pet_unprocessed. See 3.10.16

c⃝
2023-01-26

R
obA

rt
page

47
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

get/area_history

PFS:2|2L|3

map_id=<integer>
[opt] last=<integer>

{
" map_id " : <int >,
" a r e a _ h i s t o r y " : [{

" area_id " : <int >,
" c l e a n i n g _ h i s t o r y " : [{

" s t a t e _ i d " : <task_state_id >,
" s t a t e " : <s t r i n g >,
" area " : <area_size >,
" start_time " : {

" year " : <YYYY>,
" month " : <MM>,
" day " : <DD>,
" hour " : <hh24 >,
" min " : <mm>,
" s e c " : <ss >,
" day_of_week " : <DOW>

} ,
" end_time " : {

" year " : <YYYY>,
" month " : <MM>,
" day " : <DD>,
" hour " : <hh24 >,
" min " : <mm>,
" s e c " : <ss >,
" day_of_week " : <DOW>

} ,
" s o u r c e ": < s t r i n g >,
" source_id ": < int >

}
]

}
]

}

Shows the area-specific cleaning history of all
areas with area state clean (see chapter 3.10.8)
in the map specified by map_id.
The area history for a specific area is only
updated when the robot completes cleaning
that area. It can have at most 50 entries; all
entries older than 30 days are removed during
the update process.
If the parameter last=N is given, then for each
area at most N entries are returned.
The parameters state_id and state refer to the
task area states (see chapter 3.10.16).
The parameter area reflects the actually
cleaned area in cm2 (format 1.26.5).
The parameters start_time and end_time
give the start and end times of the cleaning
process, see chapter 3.10.2 for time format
specification.

Explanation of the output fields:

• "current_status" (’clean_all’, ’go_home’, etc) and "type" (’started’, ’succeeded’, etc) allow for a quick human interpretable reading
of the events and notifications.

• "type_id" gives the strong association to the various events.

• "map_id" (if not equal to zero) gives the corresponding active map id for which the corresponding event is valid.

• "area_id" (if not equal to zero) the corresponding active area id if available.

• "source_type" or "source" (’user’, ’calendar’, ’operation_unit’, ’unknown’) describes the source of an event; if it is task related
(’clean_all’) it’s the source of the task, which allows to distinguish user from calendar generated tasks. For example, "current_status"

c⃝
2023-01-26

R
obA

rt
page

48
of71

R
obot

Interface
Protocol

= ’clean_all’ with "source_type" = ’calendar’ means the this clean all task has be initiated by the calendar. Events that are not
related to tasks have "source_type" = ’operation_unit’ (e.g., "battery_low").

• "source_id" allows the association to a specific "task_id" of a calendar entry or the "cmd_id" for a user generated task (internally this
is the rob_task_id). During one rob_task (e.g., clean) all sub tasks (localize, go_home) have the same cmd_id.

• The "hierarchy" states the hierarchy level of task related events. A top level task will generate events with "hierarchy" = 1 while a
lower level task will have events with "hierarchy" > 1. For example, a go home event corresponding to a task initiated by the user will
have a "hierarchy" = 1 while a go home event in a clean all task will have a "hierarchy"= 2 (it’s a lower level task within cleaning).

• "info" gives a numerical code with additional information for the particular event.

c⃝
2023-01-26

R
obA

rt
page

49
of71

R
obot

Interface
Protocol

3.9. Direct Mode Requests
The purpose of this mode is to enable a lower level interface for more direct access to some command. This mode can be enabled and
disabled by a "direct/enable" command.
While this mode is enabled only the here listed commands can be executed (instead of the normal list of set commands).

PFS & Parameters Return Values Description
direct/enable

PFS:2|2L|3

enabled=<1/0>
{}

Enables/disables direct control mode

direct/stop

PFS:2|2L|3

{
" cmd_id": <command_id>

}

Stops the robot

direct/go_to

PFS:2|2L|3

x=<coordinate>
y=<coordinate>
[opt] heading=<angle>

{
" cmd_id": <command_id>

}

Plans a path to the specified coordinates, and
moves there if possible, heading is optional

direct/turn_to_meander

PFS:2|2L|3

x=<coordinate>
y=<coordinate>
heading=<angle>

{
" cmd_id": <command_id>

}

Executes a half circle turn to the position, if
possible.

c⃝
2023-01-26

R
obA

rt
page

50
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

direct/meander

PFS:2|2L|3

x1=<coordinate>
y1=<coordinate>
x2=<coordinate>
y2=<coordinate>

{
" cmd_id": <command_id>

}

Follows a meander line between positions
(x1,y1) and (x2,y2) as close as possible

direct/forward

PFS:2|2L|3

dist=<dist>
speed=<speed>

{
" cmd_id": <command_id>

}

Moves <dist>(1.10.5) cm forward with speed
<speed>(1.6.9) cm/sec

direct/back

PFS:2|2L|3

dist=<dist>
speed=<speed>

{
" cmd_id": <command_id>

}

Moves <dist>(1.10.5) cm forward with speed
<speed>(1.6.9) cm/sec

direct/turn_left

PFS:2|2L|3

angle=<angle>
ang_speed=<ang_speed>

{
" cmd_id": <command_id>

}

Turns left by <angle>(1.4.11) rad using angu-
lar speed <ang_speed>(1.2.13) rad/sec

direct/turn_right

PFS:2|2L|3

angle=<angle>
ang_speed=<ang_speed>

{
" cmd_id": <command_id>

}

Turns right by <angle>(1.4.11) rad using
angular speed <ang_speed>(1.2.13) rad/sec

c⃝
2023-01-26

R
obA

rt
page

51
of71

R
obot

Interface
Protocol

PFS & Parameters Return Values Description

direct/circular_move

PFS:2|2L|3

radius=<dist>
turn_speed=<ang_speed>
[opt]turn_angle=<angle>
[opt]infinite_movement=0/1

{
" cmd_id": <command_id>

}

Move in a radius <radius>(1.10.5) [cm] with
angular speed <turn_speed>(1.2.13) [rad/sec].
If not defined, <turn_angle> is 2π rad (1.4.11)
and <infinite_movement> = 1. Note: if radius
is positive, robot moves counter-clockwise, if
negative, robot move clockwise.

direct/set_pwm

PFS:2|2L|3

[opt]main_brush=<int>
[opt]side_brush=<int>
[opt]fan=<int>
[opt]pump=<int>
[opt]agitator=<int>
[opt]cleaning_parameter_set=<set_id>

{
" cmd_id": <command_id>

}

Sets the PWM values in the cleaning control.
PWM values can be in range of <0, 100>.
For <set_id> see chapter 3.10.4. If a cleaning
parameter set other than none is given, the
remaining PWM input values are ignored.

c⃝
2023-01-26

R
obA

rt
page

52
of71

Robot Interface Protocol

3.10. Data types
3.10.1. Modes
The list of possible modes is still evolving, but here are the ones that are currently available:

Name Description
not_ready Robot is in not ready mode and does not accept any tasks.
ready Robot is in ready mode. It is fully operational and accepts all user tasks. If robot

is sufficiently charged (and if defined connected to docking station), it will also
accept all calendar tasks.

exploring Robot is exploring due to user task. Robot accepts all user but no calendar tasks.
cleaning Robot is cleaning due to user or calendar task (clean all, clean map). Robot accepts

all user but no calendar tasks.
target_point Robot has been sent to a target point by the user
go_home Robot is going home due to user task. Robot accepts all user but no calendar tasks.
lifted Robot is lifted. Robot accepts neither user nor calendar tasks.
direct_control Robot is currently in direct control.
recovery Boot failure. Firmware is corrupt. Re-flashing of the robot is required.
pairing Robot is in Bluetooth and/or Open-Access-Point-pairing mode.
unknown Robot is currently in unknown state.

3.10.2. Time Format
All date and time formats in the interface are based on a 24 hour time format. The valid range of the
fields is as follows:

Abbreviation Name Valid Range Note
YYYY Year [0000, 9999]
MM Month [1, 12] From Jan to Dec
DD Day in Month [1, 31] The valid Range depends also

on the Month and the Year
DOW Day of Week [1, 7] From Mon to Sun
hh24 Hour of the day [0, 23]
mm Minute [0, 59]
List-of-DOW List of days of week [1, 7]{,[1, 7]}* E.g.: 1,2,3,4,5 for monday to fri-

day, and 6,7 for the weekend
UTCOFFSET UTC time zone offset [%2B,%2D][00,23][00,59] E.g.: %2B0200. %2B and

%2D represent the sign in URL-
encoded form (%2B=+, %2D=-
). Direct encoded signs (+,-)
only work on some platforms.
The following number is exactly
4 digits. The first two digits rep-
resent the hours, the second two
the minutes of the UTC offset.

/set/time will also accept abbreviated week day names instead of [1,7]. The allowed names are:
mon, tue, wed, thu, fri, sat and sun. Therefore, /set/time?day_of_week=wed&hour=12&min=0 and

c⃝2023-01-26 RobArt page 53 of 71

Robot Interface Protocol

/set/time?day_of_week=3&hour=12&min=0 are equivalent.
For /set/add_scheduled_task and /set/modify_scheduled_task, names and digits can be freely mixed.
/set/add_scheduled_task?...&days_of_week=1,2,wed,thu,5&... can be used to schedule from monday
to friday.

3.10.3. Cleaning Modes
This is a list of currently available cleaning modes that can be scheduled for automatic execution:

ID Description
1 Same as set/clean_all. Cleans all reachable area in automatic mode.
2 Same as set/clean_map. If additional areas parameters are specified, clean_map with areas

will be executed.

3.10.4. Cleaning Parameter Sets
A cleaning parameter set combines a number of parameter values (e.g. duty cycles for main brush, side
brush, fan, the meander distance and so on) into a set with a unique identifier. The set of included
parameters depends on the robot model. The parameter cleaning_parameter_set is an integer value
which specifies the unique identifier. The robot will then use the parameter values associated with this
id for the requested task. The associated parameter values can be configured through the parameter
interface GUI. Since revision 6.47.0, it is also possible to pass the corresponding ID-string as argument
in the http request.

ID ID-string Description
0 none Default (none) mode
1 normal Normal Mode
2 silent Silent Mode
3 intensive Intensive Mode
4 super_silent Super-silent mode
5 high High mode
6 auto Can be used in place of none if none would imply that the parameter should

be ignored.

3.10.5. Command Results
For certain commands that do not yield and instantaneous result, the outcome of these commands can be
read via this get/command_result. It will return an array of the last commands containing the numerical
cmd_id, and the status, and the error code of the command.

When you issue a set command you will get a numerical command id (cmd_id) in the return value,
this number can be used to match the command with the matching status in the array which is returned
by get/command_result.

Commands are kept in the memory until they are not finished (e.g., "executing" and "queued" are kept
forever). When command_id is in a finished state, it is removed from memory and disappears from the
console after 60 seconds (parameter par.algo.user_interface_manager.time_keep_comand_results).

The possible values for the status are:

Status Description
queued the command is inside the robots command queue

c⃝2023-01-26 RobArt page 54 of 71

Robot Interface Protocol

skipped the command was skipped due to a higher priority command in the command queue
executing the command is currently being executed
done the command was successfully executed
error the command execution was aborted cause of an error
interrupted the command execution was interrupted by an unforeseen event (depending on com-

mand this could be obstacles, low battery,...)
aborted the command execution was aborted to start a new user command or a new higher

priority scheduled command

If a command fails, its error code will be non zero. For most commands this is 1, but some commands
like wifi_connect encode some additional information into the error_code.

3.10.6. Cleaning Grid Map
The cleaning map is represented as a grid map. A grid map is a 2-dimensional mesh constructed out of
square elements. The length of the borders of these squares is defined by <resolution>. In the cleaning
coordinate system, the center of the lower left square is located at [lower_left_x; lower_left_y]. From
there, elements are lined up along the x-axis (and y-axis resp.). x indices run from 0..size_x 1, y indices
from 0..size_y 1. This means that in general the center of a cell in the feature map coordinate system
can be calculated like this:
[lower_left_x;lower_left_y] + [x_index; y_index] * resolution.
The state of each individual cell is defined by a binary map, which is encoded by a simple RLE encoding
to save bandwidth. It just outputs the number of 0s or 1s that follow. The decoded number of cells always
equals size_x * size_y. The first element is the lower left element. From there, elements in x-direction
follow row by row. The very first element in the encoding specifies the initial state (0 or 1), and does not
represent a number in the resulting decoded map. After that, all numbers mean switch state and repeat
for n times.

Example

Take for example the following simple grid map which represents the current cleaning state. The upper
two rows are mixed, and the bottom row is fully cleaned:

0 0 0 0 0
1 1 0 0 1
1 1 1 1 1

size_x would be 5, size_y 3. The resulting rle encoded string would look like this: 0,7,2,1,5

3.10.7. Map Identifier
The map-id (16 bit integer) needs to be provided with any location based command for synchronization
purposes. Consider the following example: if the robot is in the robot relocalises itself in a map, it switches
to the original with a different id. If during that phase a location based command is received, the map
id is required. If the received map id does not coincide with the map id in the robot, the command
is ignored. The client retrieves the most up to date map-id from any map related request (tile_map,
door_map, cleaning_grid_map). If received map-ids do not match (e.g. during a map switching in a
localization scenario), the client is responsible to clear the situation, i.e. using the map-ids.

c⃝2023-01-26 RobArt page 55 of 71

Robot Interface Protocol

3.10.8. Area Attributes
An area has the following attributes:

• area_id: Unique id of the area of a particular map.

• array of points: Describes the form of the area as a polygon points are interconnected by lines, the
last point is connected to the first one.

• area_type: Specifies the (hierarchy) type of an area as to_be_cleaned or room. Areas of type room
areas are generated by the robot after initial exploration. The collection of all room type areas for
a given map are cleaned for a clean_map command. Areas of type to_be_cleaned are user defined
and are only cleaned separately if specifically requested.

• area_state: Specifies the area state in terms of clean, blocking, inactive, proposed_blocking or de-
clined_blocking. Inactive areas are not considered for cleaning. Areas with state proposed_blocking
or declined_blocking have no influence on robot behavior and are only relevant for the automatic
nogo area handling.

• area_meta_data: User-defined string, UTF-8 encoded name of area.

• cleaning_parameter_set: Specifies the active cleaning parameter set for this area (see Chapter
3.10.4).

• floor_type: Specifies the floor type of the area: none (unspecified), hard_wood, carpet, tiles,
"low_pile_carpet"

• room_type: Specifies the room type of the area: none (unspecified), kitchen, office, sleeping, kids,
bath, corridor, living, dining, lavatory, storage, hallway.

• strategy_mode: Specifies the cleaning strategy mode (see Section 3.10.17), which will be used if
the user does not specify a cleaning strategy.

• method: Specifies the preferred cleaning method (dry or wet, see section 3.10.18), which will be
used if the user did not specify dry or wet cleaning explicitly. A value of none will use the default
method.

• pump_volume: Specifies the preferred pump volume mode (low, medium, high, see section 3.10.19),
which will be used if the user did not specify a volume for the task explicitly. A volume of none
will use the default pump settings.

• statistics: Statistic results for the area.

3.10.9. Points of interest Attributes
A point of interest has the following attributes:

• map_id: unique id of a particular map

• id: unique id of the point of interest

• pose: position of the point of interest in the map, given by [x, y, heading] triple.

• meta_data: user-defined string, UTF-8 encoded name of point of interest.

c⃝2023-01-26 RobArt page 56 of 71

Robot Interface Protocol

• timestamp: timestamp when the point of interest has been stored. Format <YYYY>, <MM>,
<DD>, <HH>, <MM>, <SS>.

• type: specifies the type of a point of interest. Currently existing types:
system_stuck_side_brush 100
system_stuck_main_brush 101
system_stuck_wheel 102
system_stuck_behavior 103

3.10.10. Execution top level states
The following flags represents the possible top level states as reported in get/execution_state.

Name Information
init Robot is initializing. Wait until finished.
error Robot is in an error condition from which it cannot recover. Robot must be power-

cycled.
not_ready Robot is in an abnormal condition. Please check get/robot_flags.
operational Robot is in a normal condition.
test Robot is doing an End-Of-Line calibration, verification or a demonstration.
pairing Robot is in Bluetooth and/or Open-Access-Point-pairing mode. Send set/pairing_done

when finished.

3.10.11. Execution operational states
The following flags represents the possible operational states as reported in get/execution_state. Apart
from none, these states can only occur if the top level state is operational.

Name Information
none No further information is available.
ready Robot is not doing anything in particular right now, but is ready for action.
busy Robot is currently processing a task.
direct_control Robot is in a mode that allows manual movement control.

3.10.12. Execution sub states
The following flags represents the possible sub states as reported in get/execution_state.

Name Occurs in Information
clean_all operational/busy set/clean_all is being executed, possibly star-

ted by the scheduler.
clean_map operational/busy set/clean_map is being executed, possibly

started by the scheduler.
clean_spot operational/busy set/clean_spot is being executed.
explore operational/busy set/explore is being executed.
go_home operational/busy Robot is execution set/go_home or drives to

the docking station/start point as part of another
task.

go_to operational/busy set/target_point is being executed.

c⃝2023-01-26 RobArt page 57 of 71

Robot Interface Protocol

localize operational/busy Robot is trying to localize in a particular map as
part of another task.

recharge_and_continue operational/busy Robot is going home to recharge and will con-
tinue its current task later. This happens as part
of another task.

docking_search operational/busy Robot is searching for the docking station as part
of another task.

undocking operational/busy Robot is undocking from the docking station as
part of another task.

wet_pad_priming operational/busy Robot is priming its wet pad.
redocking operational/busy Robot is trying to redock to the docking station

after connection loss.
test_calibration test Robot is executing one of the End-Of-Line calib-

rations or verifications.
test_endurance_test test Robot is executing a demonstration

(test/run_test?test_type=203).
test_box_test test Robot is executing a demonstration

(test/run_test?test_type=201).
test_rectangle_odo_test test Robot is executing a demonstration

(test/run_test?test_type=204).
test_unlimited_cleaning test Robot is executing a demonstration

(test/run_test?test_type=200).
test_straight_line test Robot is executing a demonstration

(test/run_test?test_type=202).

3.10.13. Robot flags
The following flags represents conditions of the robot that might or might not inhibit it from operating
normally.

Name Type Required action
lifted not-ready Put down robot
battery_low notification None, however cleaning is disabled until the robot

is recharged
battery_critical not-ready Put robot on docking station or connect it via

power cable, and wait until charged
connected_to_cable not-ready Disconnect power cable from robot
stuck_drop_sensor not-ready Lift robot and put it down again
dustbin_missing not-ready Reinsert dustbin. (Note: for some products, this

is only a notification.)
dustbin_full notification Empty dustbin at next opportunity
toplid_open notification Close the lid. Cleaning and exploration are dis-

abled in this state
water_tank_inserted notification Behaviour differs when water tank is docked
water_tank_empty notification Cannot clean with empty water tank inserted
main_brush_missing notification None, however, if this happens often, the cause

might be a damaged main brush component

c⃝2023-01-26 RobArt page 58 of 71

Robot Interface Protocol

battery_temp_critical not-ready None. Note: when this happens during charging,
it is only a notification

pairing not-ready Finish pairing or power-cycle robot
layers_not_running error Power-cycle robot
safety_supervisor_eternal_stop error Power-cycle robot
safety_supervisor_safety_stop not-ready Lift robot and put it down again
timestamp_overflow error Power-cycle robot
missing_camera_data error Power-cycle robot
missing_imu_data error Power-cycle robot
stuck_main_brush notification Clear main brush of obstructions if there are

some. This can be caused by thick carpets.
stuck_side_brush notification Clear side brush of obstructions if there are some.

This can be caused by thick carpets.
stuck_wheel notification Clear wheels of obstructions if there are some.
stuck_fan notification Clear fan of obstructions if there are some.
stuck_behavior notification Robot failed to plan its movement due to its cur-

rent environment. Please remove obstacles, or
place the robot somewhere else.

stuck_bumper notification Check bumper for foreign objects.
stuck_wheelswitch not-ready Lift robot and put it down again.
stuck_water_pump notification Check water pump if it happens repeatedly.
missing_water_pump notification Check water pump if it happens repeatedly.
stuck_wet_pad_agitator notification Check agitator if it happens repeatedly.
missing_wet_pad_agitator notification Check agitator if it happens repeatedly.
missing_sensor_data notification Some unspecified sensor data is missing.

3.10.14. Task types
The following task types can be shown in the task history.

Type Type id
clean_all 0
clean_map 1
clean_spot 2
explore 3
go_home 4
go_to 5
skipped_task 6
reexplore 7

3.10.15. Task states
A task in the task history may be in one of the following states.

State State id Cause of interruption
executing 0 No interruption, task is running
done 1 Task was completed successfully

c⃝2023-01-26 RobArt page 59 of 71

Robot Interface Protocol

failed 2 Failure for unspecified reasons
interrupted_by_user 3 Another user command was issued
interrupted_system_reinitialization
_pending

15 Robot was still reinitializing

interrupted_system_reinitialization
_failure

17 Robot reinitialization failed, requires power-
cycle

interrupted_map_missing 18 Map initialization problem
interrupted_battery_critical 20 Insufficient battery level to operate
interrupted_battery_low 21 Insufficient battery level to continue clean-

ing
event_docked 25 NOTE: Appears only in the event history
interrupted_cable_connected 27 A connected power-cable disallowed robot

movement
interrupted_lifted 30 Robot was lifted off the ground
interrupted_toplid_open 35 Top lid was opened
interrupted_stuck_main_brush 40 Main brush appeared to be stuck
interrupted_stuck_side_brush 41 Side brush appeared to be stuck
interrupted_stuck_wheels 42 One of the wheels appeared to be stuck
interrupted_stuck_fan 43 Fan appeared to be stuck
interrupted_stuck_by_behaviour 44 Robot could no longer plan its movements,

probably because of difficult environment.
interrupted_stuck_by_dropsensor 45 Drop sensor reports suggested that it was

unsafe to navigate, or drop sensors were act-
ive at start of task.

interrupted_stuck_bumper 46 Bumper was not released despite consider-
able movement of the robot, or was active
at start of task.

interrupted_stuck_wheelswitch 47 Wheelswitch was active at start of task.
interrupted_missing_dustbin 50 Dustbin appeared to be missing
interrupted_safety_supervisor 60 Safety supervisor chip blocked all move-

ments, requires power-cycle
interrupted_safety_stop 62 Safety supervisor chip blocked all move-

ments, requires lift
interrupted_missing_main_brush 70 Main brush appeared to be missing
interrupted_battery_temp_critical 75, 77 Battery was apparently overheating (75

= while charging, 77 = while dischar-
ging/cleaning)

interrupted_water_tank_removed 80 Water tank was removed
interrupted_water_tank_inserted 81 Water tank was inserted
interrupted_water_tank_empty 82 Cleaning was interrupted due to an empty

water tank
interrupted_missing_water_pump 85 Water pump reported undercurrent
interrupted_stuck_water_pump 86 Water pump reported overcurrent
interrupted_missing_wet_pad_agitator 87 Wet pad agitator reported undercurrent
interrupted_stuck_wet_pad_agitator 88 Wet pad agitator reported overcurrent
interrupted_power_switch_shutdown 100 Robot was shutdown by the power switch

c⃝2023-01-26 RobArt page 60 of 71

Robot Interface Protocol

interrupted_low_battery_shutdown 101 Robot was shutdown due to a critical bat-
tery condition

interrupted_reboot 102 Robot was shutdown to execute a reboot
interrupted_firmware_update_reboot 103 Robot was shutdown to execute a reboot

after a firmware update
event_dry_cleaning 110 Robot started dry cleaning
event_wet_cleaning 111 Robot started wet cleaning
started_docking_search 142 Search for the docking station was started

as part of the task
started_recharge_and_continue 143 Recharging was started as part of the task
started_redocking 147 Redocking after connection loss was started

as part of the task
started_reexplore 148 Reexploration / map extension was started

as part of the task
started_auto_deep_clean 149 Robot started second cleaning pass after fin-

ishing the first
succeeded_docking_search 152 Search for the docking station was success-

fully finished as part of the task
succeeded_recharge_and_continue 153 Recharging was successfully finished as part

of the task
succeeded_redocking 157 Redocking after connection loss was success-

fully finished as part of the task
succeeded_reexplore 158 Reexploration / map extension was success-

fully finished as part of the task
failed_go_home 160 Going home as part of the task failed
failed_localization 161 Robot failed to confirm its position in the

map, and stopped to avoid causing damage
in the no-go areas

failed_docking_search 162 Finding the docking station as part of the
task failed

failed_recharge_and_continue 163 Recharging as part of the task failed
failed_go_to 164 Going to a target point as part of the task

failed
failed_localization_due_to_timeout 165 Robot failed to confirm its position in the

map within the given time limit
failed_relocalization 166 Robot failed subsequent confirmations of its

position in the map within the given time
limit

failed_redocking 167 Redocking after connection loss failed as
part of the tas

failed_reexplore 168 Reexploration / map extension failed as part
of the task

failed_go_home_due_to_blocking_
area

169 Failed go-home due to path being blocked
by blocking area (or carpet area if using wet-
clean)

c⃝2023-01-26 RobArt page 61 of 71

Robot Interface Protocol

failed_target_unreachable_due_to_
blocking_area

170 Failed to drive to target due to path be-
ing blocked by blocking area (or carpet area
during wet-clean)

interrupted_stuck_by_behaviour
_due_to_drop_sensor

215 Robot couldn’t free itself due to drop sensor

interrupted_stuck_by_behaviour
_due_to_self_lift

216 Robot couldn’t free itself due to self lift

interrupted_stuck_by_behaviour
_due_to_complicated_terrain

217 Robot couldn’t free itself due to difficult ter-
rain (carpet, obstacles, ...)

interrupted_stuck_by_behaviour
_due_to_blocking_area

218 Robot couldn’t free itself due to no-
go/blocking area blocking the path

interrupted_stuck_by_behaviour
_due_to_carpet

219 Robot couldn’t free itself due to carpet

skipped_due_to_not_docked 220 Calendar task was skipped because robot
was not docked

skipped_due_to
_insufficient_battery_level

221 Calendar task was skipped because robot
battery level was insufficient

skipped_due_to_timeout 222 Task was skipped because it could not be
started in a timely manner

skipped_due_to_open_toplid 223 Task was skipped because the top lid was
open

skipped_continue 224 A set/continue could not be executed
skipped_start_or_continue 225 A set/clean_start_or_continue could not be

executed
skipped_by_clean_all 230 A task was skipped because a clean_all was

already running
skipped_by_clean_map 231 A task was skipped because a clean_map

was already running
skipped_by_clean_spot 232 A task was skipped because a clean_spot

was already running
skipped_by_explore 233 A task was skipped because explore was

already running
skipped_by_reexplore 234 A task was skipped because reexplore was

already running
skipped_by_go_home 235 A task was skipped because a go_home was

already running
skipped_by_go_to 236 A task was skipped because a go_to was

already running
skipped_by_task 237 A task was skipped because some other task

was already running
skipped_by_test_mode 238 A task was skipped because robot was in

test mode
skipped_by_direct_ctrl_mode 239 A task was skipped because robot was in

direct control mode
skipped_by_pairing_mode 240 A task was skipped because robot was in

pairing mode

c⃝2023-01-26 RobArt page 62 of 71

Robot Interface Protocol

skipped_by_error_mode 241 A task was skipped because robot was in
error state

skipped_by_not_ready_mode 242 A task was skipped because robot was not
ready

skipped_by_init_mode 243 A task was skipped because robot was still
initializing

3.10.16. Task area states
Relevant for the area history inside a task history entry (get/task_history) and the area-specific cleaning
history (get/area_history).

State State id Description
executing 0 Area is being cleaned
done 1 Area cleaning was completed successfully
failed 2 Area cleaning failed for unspecified reasons
extended 3 Area was added as part of reexploration resp.

map extension
carpet_unprocessed 4 Area was added during a carpet detection task.

Will be changed to carpet_processed after a cor-
responding set/modify_area or set/delete_area.

carpet_processed 5 Area was added during a carpet detection task,
and already either confirmed or rejected.

carpet_extended 6 Area was added during a carpet detection task,
while extending the map. Will be changed to
carpet_unprocessed if map is saved.

interrupted_failed_relocalization 10 Area cleaning was interrupted because relocal-
ization test failed

interrupted_wet_cleaning_carpet 11 Tried to wet clean a carpet area
interrupted_area_state_not_clean 12 State of area to be cleaned was NOT ’clean’
interrupted_area_not_reachable 13 Failed to reach area, which was therefore

skipped
aborted 14 Relevant for get/area_history: cleaning of

area was aborted (e. g., robot was lifted, user
sent a stop-command, battery was low, ...)

interrupted_battery_low 15 Area cleaning was interrupted because battery
was low

multiple_map_relocalization 16 Clean-area interrupted by multiple map reloc-
alization

pp_failed_due_to_blocking_area 17 Clean-area failed due to path being blocked by
blocking area (or carpet area during wet-clean)

pending 99 Pending areas will be next to clean, in that or-
der

3.10.17. Cleaning strategies

Strategy Mode id Description

c⃝2023-01-26 RobArt page 63 of 71

Robot Interface Protocol

normal 1 Clean everything in the target area (default cleaning strategy)
walls_and_corners 2 Concentrate only on cleaning outer boundaries of target area, and

spaces near walls and obstacles
deep 3 Clean everything in the target area twice (horizontally and ver-

tically, respectively)
none 4 If this strategy mode is selected for cleaning, the areas will be

cleaned with their individual strategy modes (which is set in the
strategy_mode field of the area attributes and can be different for
each area, see Section 3.10.8)

rigorous 7 Clean everything in the target area twice (horizontally and ver-
tically, respectively), putting extra effort into edge cleaning.

3.10.18. Cleaning methods

Method Description
none Use default method. E.g. use wet cleaning if water tank is inserted. Otherwise do dry

cleaning. Depends on robot family.
dry Dry clean.
wet Wet clean.

3.10.19. Pump volume modes

ID ID string Description
0 none Don’t change the setting. Not supported for set/pump_volume_settings.
1 low
2 medium
3 high
4 auto Can be used in place of none if none would imply that the parameter should be

ignored.
- direct Not supported anymore.

3.10.20. Sensor types and measurements

Device type Payload type Payload Description

gpio sensor_input_gpio
{

" event_id " : <int >,
" timestamp " : <timestamp >,
" v al ue " : <enum : " a c t i v e " / " i n a c t i v e ">

}

Sensors know-
ing only the two
states on and off,
e.g. Bumpers,
some dropsensors,
dustbin switch.

current_sensor sensor_input_
current

{
" c u r r e n t " : <mil l iampere >,
" timestamp " : <timestamp >,

}
Electrical current

voltage_sensor sensor_input_
voltage

{
" v o l t a g e " : <m i l l i v o l t >,
" timestamp " : <timestamp >,

}
Electrical voltage

c⃝2023-01-26 RobArt page 64 of 71

Robot Interface Protocol

actuator_pwm device_command_
actuator_pwm

{
"pwm" : <int >

}
PWM settings for
cleaning gadget
motors in percent
(0-100)

ir_sensor sensor_input_
ir_sensor

{
" timestamp ": < timestamp >,
" low_off ": < int16 >,
" low_on": < int16 >,
" med_off ": < int16 >,
"med_on": < int16 >,
" h i g h _ o f f ": < int16 >,
" high_on ": < int16 >,

}

Raw dropsensor
adc values)

speed_sensor sensor_input_
speed_sensor

{
" timestamp ": < timestamp >,
" v e l o c i t y " : <int32 , cm/ s , 1.22.9 >

}
Raw wheel speed

3.10.21. Device descriptors
A list of device descriptors typically present on a robot. Note that the precise device descriptors used
depend on the precise robot model. The symbol * is a placeholder for an arbitrary string, e.g. bumper_*
could include bumper_left and bumper_right or bumper_1 and bumper_2.

Note that a single device descriptor might appear for several different device types since a single device
might produce different kinds of measurements (e.g. current and voltage from the battery).

Descriptor Device type Remark
drop_* gpio
bumper_* gpio Typically bumper_left and bumper_right
main_brush current_sensor
side_brush_* current_sensor Typically side_brush_left and side_brush_right
fan current_sensor
battery current_sensor
wheel_* current_sensor Typically wheel_left and wheel_right
battery voltage_sensor
fan actuator_pwm
main_brush actuator_pwm
side_brush actuator_pwm Side brush speeds can only be set for all side brushes at once
sense_* ir_sensor Raw infrared values from dropsensors
wheel_left speed_sensor Raw speed of left wheel
wheel_right speed_sensor Raw speed of right wheel

3.10.22. Data types and meta information
Fixpoint datatypes may be signed or unsigned; the fixpoint format specified in the additional meta
information below will contain the sign information.

Data type Description
uint8 unsigned 8-bit integer
int8 signed 8-bit integer
uint16 unsigned 16-bit integer
int16 signed 16-bit integer
uint32 unsigned 32-bit integer

c⃝2023-01-26 RobArt page 65 of 71

Robot Interface Protocol

int32 signed 32-bit integer
uint64 unsigned 64-bit integer
int64 signed 64-bit integer
fract8 8-bit fixpoint number
fract16 16-bit fixpoint number
fract32 32-bit fixpoint number
float single-precision floating point number
double double-precision floating point number
string String

The following meta information may appear in addition to a data type:

Information Description
fixpoint_format fixpoint format of a fixpoint number

in the format sign bits.pre-comma bits.post-comma bits
min minimum allowed value for a numeric primitive
max maximum allowed value for a numeric primitive

c⃝2023-01-26 RobArt page 66 of 71

Robot Interface Protocol

4. Error Handling

When the server does not reply with 2xx (i.e. success), the response will be either empty (in case of an
unknown error event) or contain a standard error message.

A standard error message will be formatted like this:

{
"error_code": <code>,
"error_tag" : "<Tag>",
"error_msg" : "<Message>"

}

4.1. Possible Error Codes

error_code error_tag
101 unknown_request
102 parameter_error
103 value_unknown
104 not_implemented
105 data_timeout
106 request_deprecated
107 request_not_successful

c⃝2023-01-26 RobArt page 67 of 71

Robot Interface Protocol

A. Examples

A.1. Get the correct Feature Map
Request the feature map from the robot// http://<ip-of-robot>:<port>/get/feature_map The robot
will answer with status 200 OK and the following content:

{
"map": {
"lines": [
{

"x1": 100,
"y1": 100,
"x2": 200,
"y2": 100

},
{

"x1": 200,
"y1": 100,
"x2": 200,
"y2": 200

},
{

"x1": 200,
"y1": 200,
"x2": 100,
"y2": 200

},
{

"x1": 100,
"y1": 200,
"x2": 100,
"y2": 100

}
]
}

}

A.2. Get the current robot Status
http://<ip-of-robot>/get/status

The robot will answer with status 200 OK and the following content:

{

c⃝2023-01-26 RobArt page 68 of 71

Robot Interface Protocol

"voltage": 16384,
"mode": "exploring",
"cleaning_parameter_set": 0,
"battery_level": 79,
"charging": "disconnected",
"time": {

"year": 2014,
"month": 4,
"day": 11,
"hour": 17,
"min": 42

}
}

The robot is in exploration mode, the battery level is 79%, and the voltage is 16384/1024 = 16 V (in
FXP 1.5.10).

A.3. Send robot to some location
http://<ip-of-robot>/set/target_point?x1=150&y1=150
If the request is valid, the robot will answer with status 200 OK and following response:

{
"cmd_id": 1
}

Note that the ordering of the parameters is important. The following will not work in the current
implementation:
http://<ip-of-robot>/set/target_point?y1=150&x1=150

It might answer with an error code (400) and send an error response:

{
"error_code": 102,
"error_tag" : "parameter_error",
"error_msg" : "Unexpected Parameter y1"

}

The robot will then switch into target _point mode (this will be the mode returned by get/status).
Upon completion of the command, a request to get/command_result might yield the following outcome:

{
"commands": [
{

"cmd_id" : 1,
"status" : "executing"

}
]

}

If you send then a set/stop command which answers with:

c⃝2023-01-26 RobArt page 69 of 71

Robot Interface Protocol

{
"cmd_id": 2
}

and wait until the robot stops, get/command_result will show:

{
"commands": [
{

"cmd_id" : 1,
"status" : "aborted"
"error_code": 0

},
{
"cmd_id" : 2,
"status" : "done"
"error_code": 0

}
]

}

A.4. Add scheduled task
We can send a http request to the robot (remember to use the right port):

http://<ip-of-robot>/set/add_scheduled_task?cleaning_mode=0&cleaning_parameter_set=0&
year=2018&month=10&day=10&hour=10&min=10&repeated=01&map_id=0¶m1=10¶m2=10"

In this case we set a new scheduled task to be executed on 10.10.2018 at 10:10.
If the request is valid, the robot will answer with status 200 OK and following response:

{
"cmd_id": 1
}

Note that the ordering of the parameters is important. If we send, for example, an incomplete request:

http://<ip-of-robot>/set/add_scheduled_task?cleaning_mode=0&cleaning_parameter_set=0&
year=2018&month=10&day=10"

It might answer with an error code (400) and send an error response:

{
"error_code": 102,
"error_tag" : "parameter_error",
"error_msg" : ""
}

Please follow strictly the rules about mandatory parameters.

c⃝2023-01-26 RobArt page 70 of 71

Robot Interface Protocol

A.5. Errorneous command result
If an http operation returns an error, the response on get/command_result will show:

{
"commands": [
{

"cmd_id":1,
"status": "error"
"error_code": 0

}]
}

Example: Add an area to non-existing map (with map_id=123).
Command set/add_area?map_id=123&x1=100&y1=200&x2=100&y2=200&x3=100&y3=200 returns:

{
"cmd_id": 1
}

After calling get/command_result, we obtain:

{
"commands": [
{

"cmd_id":1,
"status": "error"
"error_code": 0

}]
}

c⃝2023-01-26 RobArt page 71 of 71

	Introduction
	General Rules
	Finding the Robot
	Alternative to ZeroConf based discovery

	Number Formats

	Requests
	Unlocking Requests
	General Requests
	Config Requests
	Map Requests
	Area Requests
	Points of Interest Requests
	Schedule Requests
	Logging Requests
	Direct Mode Requests
	Data types
	Modes
	Time Format
	Cleaning Modes
	Cleaning Parameter Sets
	Command Results
	Cleaning Grid Map
	Map Identifier
	Area Attributes
	Points of interest Attributes
	Execution top level states
	Execution operational states
	Execution sub states
	Robot flags
	Task types
	Task states
	Task area states
	Cleaning strategies
	Cleaning methods
	Pump volume modes
	Sensor types and measurements
	Device descriptors
	Data types and meta information

	Error Handling
	Possible Error Codes

	Examples
	Get the correct Feature Map
	Get the current robot Status
	Send robot to some location
	Add scheduled task
	Errorneous command result

